三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

Microscope-Based AI Identifies Bacteria Accurately


 

Microscopes enhanced with artificial intelligence (AI) could help clinical microbiologists diagnose potentially deadly blood infections and improve patients' odds of survival.

Scientists have demonstrated that an automated AI-enhanced microscope system is "highly adept" at identifying images of bacteria quickly and accurately. The automated system could help alleviate the current lack of highly trained microbiologists, expected to worsen as 20% of technologists reach retirement age in the next five years.


Scientists working with the Department of Pathology, Beth Israel Deaconess Medical Center, (Boston, MA, USA) used an automated microscope designed to collect high-resolution image data from microscopic slides. In this case, blood samples taken from patients with suspected bloodstream infections were incubated to increase bacterial numbers. Then, slides were prepared by placing a drop of blood on a glass slide and stained with dye to make the bacterial cell structures more visible.


The investigators then trained a convolutional neural network (CNN), a class of artificial intelligence modeled on the mammalian visual cortex and used to analyze visual data, to categorize bacteria based on their shape and distribution. These characteristics were selected to represent bacteria that most often cause bloodstream infections; the rod-shaped bacteria including Escherichia coli; the round clusters of Staphylococcus species; and the pairs or chains of Streptococcus species. All slides were imaged without coverslips using a MetaFer Slide Scanning and Imaging platform with a 140-slide capacity automated slide loader equipped with a 40× magnification Plan-Neofluar objective.


To train it, the scientists fed their unschooled neural network more than 25,000 images from blood samples prepared during routine clinical workups. By cropping these images, in which the bacteria had already been identified by human clinical microbiologists, the scientists generated more than 100,000 training images. The machine intelligence learned how to sort the images into the three categories of bacteria (rod-shaped, round clusters, and round chains or pairs), ultimately achieving nearly 95% accuracy.

 

The team challenged the algorithm to sort new images from 189 slides without human intervention. Overall, the algorithm achieved more than 93% accuracy in all three categories. Sensitivity/specificity was 98.4/75.0% for Gram-positive cocci in chains/pairs; 93.2/97.2% for Gram-positive cocci in clusters; and 96.3/98.1% for Gram-negative rods. The study was published on November 29, 2017, in the Journal of Clinical Microbiology.

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 鹤山市| 九江县| 北安市| 江门市| 海城市| 寿光市| 南京市| 衡阳县| 阳西县| 石棉县| 静乐县| 兴安县| 菏泽市| 姜堰市| 千阳县| 新野县| 榆林市| 如东县| 德钦县| 珲春市| 乌恰县| 会东县| 舞钢市| 永定县| 曲水县| 河西区| 亳州市| 上思县| 巴彦淖尔市| 农安县| 徐汇区| 东城区| 乐亭县| 永新县| 称多县| 怀宁县| 康定县| 民和| 中阳县| 甘孜县| 商河县|