三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

AI-based Software Analyzes Cancer Cells from Digitized Pathology Slides to Improve Diagnoses


Researchers from UT Southwestern (Dallas, TX, USA) have developed a software tool that uses artificial intelligence (AI) to recognize cancer cells from digital pathology images, allowing clinicians to predict patient outcomes.
The spatial distribution of different types of cells can reveal a cancer’s growth pattern, its relationship with the surrounding microenvironment, and the body’s immune response. However, the process of manually identifying all the cells in a pathology slide is extremely labor intensive and error-prone. A major technical challenge in systematically studying the tumor microenvironment is how to automatically classify different types of cells and quantify their spatial distributions.
The AI algorithm, called ConvPath, developed by the researchers overcomes these obstacles by using AI to classify cell types from lung cancer pathology images. The ConvPath algorithm can “look” at cells and identify their types based on their appearance in the pathology images using an AI algorithm that learns from human pathologists. The algorithm effectively converts a pathology image into a “map” that displays the spatial distributions and interactions of tumor cells, stromal cells (i.e., the connective tissue cells), and lymphocytes (i.e., the white blood cells) in tumor tissue. Whether tumor cells cluster well together or spread into stromal lymph nodes is a factor revealing the body’s immune response. So knowing that information can help doctors customize treatment plans and pinpoint the right immunotherapy. Ultimately, the algorithm helps pathologists obtain the most accurate cancer cell analysis – in a much faster way.
“As there are usually millions of cells in a tissue sample, a pathologist can only analyze so many slides in a day. To make a diagnosis, pathologists usually only examine several ‘representative’ regions in detail, rather than the whole slide. However, some important details could be missed by this approach,” said Dr. Guanghua “Andy” Xiao, corresponding author of a study published in EBioMedicine and Professor of Population and Data Sciences at UT Southwestern. “It is time-consuming and difficult for pathologists to locate very small tumor regions in tissue images, so this could greatly reduce the time that pathologists need to spend on each image.”

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 鹤峰县| 交口县| 吉木萨尔县| 即墨市| 荔波县| 巴彦淖尔市| 大悟县| 漾濞| 西贡区| 永定县| 天镇县| 巴彦县| 五峰| 平原县| 开封县| 临泽县| 石台县| 锦州市| 沅陵县| 渝中区| 滨海县| 雷波县| 弥勒县| 德阳市| 盐山县| 长武县| 崇州市| 东方市| 英超| 儋州市| 手机| 天祝| 松原市| 上虞市| 日喀则市| 商丘市| 微博| 福清市| 和静县| 勐海县| 永嘉县|