三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

New proton technique enables more specific targeting of resistant cancer cells


 

Researchers at Mayo Clinic have developed LEAP, a new technique that enables clinicians to more specifically target and administer proton therapy to cancer cells that resist other forms of treatment.

"We compared the effects of delivering the same amount of energy or dose into cancer cells using a dense energy deposition pattern with LEAP versus spreading out the same energy more diffusely, which is typical of conventional photon and proton therapy," said radiation oncologist Dr. Robert Mutter, co-principal investigator of the study. "Surprisingly, we discovered that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are exquisitely sensitive to a new concentrated proton technique."

A variety of internal and external forces create tens of thousands of DNA lesions daily. Cells use evolved complex repair pathways to repair the damage, but defects in these pathways can lead to the development of diseases, including cancer.

Using a dense energy deposition pattern, Mutter and his colleague, Zhenkun Lou, the other co-principal investigator, applied LEAP, which is an acronym for biologically enhanced particle therapy, to tumors with inherent defects in the ATM-BRCA1-BRCA2 DNA repair pathway. These types of defects are commonly found in cancer, with breast and ovarian cancer mutations in BRCA1 and BRCA2 repair genes being the most common cause.

They found that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are more sensitive to a new concentrated proton technique compared to when the same amount of energy is dispersed more diffusely in conventional photon and proton therapy. The technique spared healthy tissues from exposure to radiation therapy and allowed their full complement of DNA repair elements to remain intact. In addition, the researchers were able to alter DNA repair mechanisms by co-administering an ATM inhibitor, a regulator of the body’s response to DNA damage, which enhanced the sensitivity of repair-proficient cells to LEAP.

"LEAP is a paradigm shift in treatment, whereby newly discovered biologic responses, induced when proton energy deposition is concentrated in cancer cells using novel radiation planning techniques, may enable the personalization of radiotherapy based on a patient's tumor biology," said Mutter.

Mutter and the radiation oncology team at Mayo are currently developing clinical trials to assess the safety and efficiency of LEAP for multiple types of cancer.

The findings were published in Cancer Research, the journal of the American Association for Cancer Research.

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 黔东| 旌德县| 九江市| 昌图县| 太康县| 宝鸡市| 久治县| 宜川县| 乐平市| 桑日县| 印江| 齐齐哈尔市| 长子县| 永新县| 县级市| 林口县| 玉林市| 西平县| 合川市| 岳阳县| 湘乡市| 西乌珠穆沁旗| 桦川县| 贵南县| 鲁山县| 兰西县| 汉寿县| 城市| 云梦县| 桃园县| 乳山市| 武隆县| 卓资县| 汾阳市| 句容市| 绥芬河市| 多伦县| 永宁县| 桂阳县| 嘉荫县| 板桥市|